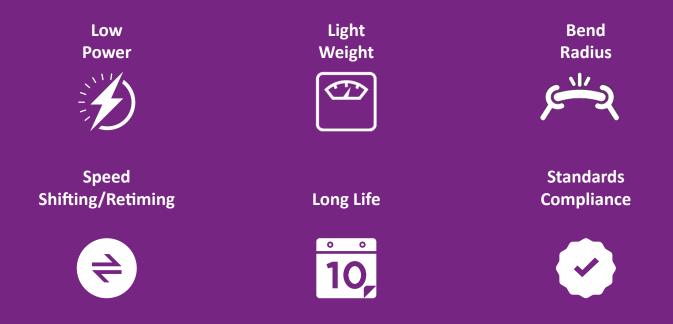


(32)

(di)

(x)

Credo's distinctive purple HiWire™ Active Electrical Cables (AECs) are plug and play copper interconnect cables designed for affordable, lossless operation at 100G, 200G, 400G, and 800G speeds. AECs come with built in retimer, gearbox, PCS and FEC terminations. AECs offer a high performance alternative to short, thick DACs and high power, high cost AOCs for data center and telecom applications.

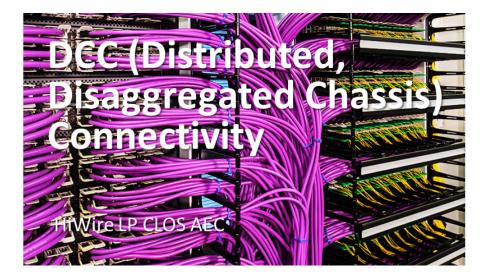

HiWire

A New Connectivity Standard is Born

The demand for cloud computing, instant data streaming, and emerging applications including 5G, AI, and machine learning have pushed Hyperscale, enterprise and edge data centers to accelerate the deployment of 400G and 800G networks. However, traditional architectures, component availability, costs, and device limits on power and performance have presented significant hurdles to moving forward. After years of research and development, Credo introduced HiWire™ Active Electrical Cables (AECs) as the next industry solution to solve the connectivity bottleneck. AEC technology was immediately embraced and over 50 cable, switch, datacenter and connectivity suppliers have joined the HiWire Consortium to accelerate the standardization and deployment of AECs.

Introducing HiWire Active Electrical Cable

Credo HiWire Active Electrical Cables (AEC) have distinct advantages over standard copper DACs and high-performance AOCs or optics. This new category of lightweight, high performance, low power cable interconnects with integrated retimers and gearboxes have already been a disruptive force in data center implementations by redefining the cable interconnect and enabling the accelerated deployment for 400G and 800G.


Replacing DACs

- Up to 75% less weight and volume
- Tighter bend radius
- Longer reach up to 7m

Replacing AOCs

- Up to 50% lower power
- Up to 50% lower cost
- 2.5X longer life

Enabling Markets

DDCs replace proprietary, highcost chassis using back panel interconnect with standards-based white box hardware, open source or 3rd party software and front panel interconnect. AECs take up to 75% less volume than DACs and up to 50% less power than AOCs enabling unprecedented DDC densities.

Of all data center cabling infrastructure, Server (NIC) to Top-of-Rack (TOR) switch links are undergoing the most innovations. AECs enable extended lengths for shared TORs, gearboxing for NRZ-PAM4 links and advanced functions enabling network managed redundancy and security.

Credo AEC Families

LP SPAN/SPAN AEC

Replace AOCs with low power plug and play AECs for port-to-port and rack-to-rack connectivity.

Key Features

- Up to 7m (LP SPAN) and 5m (SPAN)
- Up to 50% less power than optics
- Up to 50% lower cost than optics
- Up to 2.5x longer life than optics

Common Implementations

HiWire SPAN/LP AECs are commonly used in Distributed Disaggregated Chassis (DDC) implementations.

SHIFT AEC

Deliver plug and play connectivity between PAM4 ports and NRZ NICs with speed shifting and FEC termination in-cable.

Key Features

- Up to 5m length
- Up to 50% less power than optics
- Up to 50% lower cost than optics
- Up to 2.5x longer life than optics

Common Implementations

HiWire SHIFT cables are commonly used in NIC to TOR and Spine/Leaf applications where a PAM4 port must be mated to a legacy NRZ port.

Credo AEC Families

LP CLOS AEC

Designed to replace backplanes in chassis with front panel interconnect used in Distributed, Disaggregated Chassis (DDC) applications.

Key Features

- 400G cables as thin as Cat6
- Up to 2.5m length
- Up to 50% less power than optics
- Up to 75% volume than DACs
- Up to 1,000 cables per rack routing density

Common Implementations

HiWire LP CLOS AECs are commonly used in Distributed Disaggregated Chassis (DDC) implementations.

SWITCH/LP SWITCH AEC

Designed to enable Network Managed NIC to dual TOR connectivity in an Active/Standby configuration.

Key Features

- Natively supported in SONiC
- Fully NOS Managed
- Automatic/Manual Failover at <1ms
- Full observability and control for all cable ends

Common Implementations

HiWire SWITCH/LP SWITCH AECs are commonly used in TOR-to-NIC applications.

Distinctive Purple HiWire AECs

A SIDE			AEC CABLE		B SIDE			
SPEED	CONNECTOR	MODE	ТҮРЕ	REACH	SPEED	CONNECTOR	MODE	
A			1					
	400G TO 400G							
8 X 56G	QSFP-DD	PAM4	LP CLOS	0.5M-2.5M	8 X 56G	QSFP-DD	PAM4	Datasheet
8 X 56G	QSFP-DD	PAM4	LP SPAN	3M-7M	8 X 56G	QSFP-DD	PAM4	Datasheet
8 X 56G	QSFP-DD	PAM4	SPAN	3M-5M	8 X 56G	QSFP-DD	PAM4	Datasheet
	400G TO 100G							
8 X 56G	QSFP-DD	PAM4	SHIFT	3M-5M	4 X 28G	4 X QSFP28	NRZ	Datasheet
8 X 56G	OSFP	PAM4	SHIFT	3M-5M	4 X 28G	4 X QSFP28	NRZ	Datasheet
	200G TO 200G							
4 X 56G	QSFP56	PAM4	LP SPAN	3M-7M	4 X 56G	QSFP56	NRZ	Datasheet
4 X 56G	QSFP56	PAM4	SPAN	3M-5M	4 X 56G	QSFP56	NRZ	Datasheet
	200G TO 100G							
4 X 56G	QSFP56	PAM4	SHIFT	3M-5M	4 X 28G	2 X QSFP28	NRZ	Datasheet
4 X 56G	QSFP56	PAM4	SHIFT	3M-5M	2 X 56G	2 X QSFP56	PAM4	Datasheet
4 X 56G	QSF8P56	PAM4	LP SHIFT	3M-7M	2 X 56G	2 X QSFP28	PAM4	Datasheet
	100G TO 2X100G							
4 x 28G	QSFP28	NRZ	LP SWITCH	0.5M-2.5M	4 X 28G	2 X QSFP28	NRZ	Datasheet
	50G TO 2X50G							
2 x 28G	QSFP28	NRZ	SWITCH	0.5M-2.5M	2 X 28G	2 X QSFP28	NRZ	Datasheet
2 x 28G	QSFP28	NRZ	LP SWITCH	0.5M-2.5M	2 X 28G	2 X QSFP28	NRZ	Datasheet

For more information visit www.credosemi.com/hiwire or contact us at hiwire@credosemi.com

www.credosemi.com/hiwire

©2021 Credo Semiconductor, Inc. All Rights Reserved. Credo, the Credo logo, HiWire and the HiWire logo are trademarks of Credo Semiconductor Inc. All other marks are the property of their respective owners. This document is for information only. Specifications are subject to change without notice.